General Information
An introduction to essential quantitative theory and tools necessary for business intelligence and data analysis needs of modern organisations. Includes basic statistics, probability distributions, correlation, regression and time series forecasting. Emphasises the selection of an appropriate analytical approach to a given problem and the use of spreadsheets for data management and analysis to develop practical computational skills and problem-solving capabilities.
-
Details
Academic unit: Bond Business School Subject code: STAT71-102 Subject title: Analysis and Application Subject level: Postgraduate Semester/Year: September 2019 Credit points: 10.000 -
Delivery & attendance
Timetable: https://bond.edu.au/timetable Delivery mode: Standard Workload items: - Lecture: x12 (Total hours: 24) - Weekly Lecture
- Tutorial: x12 (Total hours: 24) - Lab Tutorial
- Personal Study Hours: x12 (Total hours: 72) - Recommended study time & reviewing materials
Attendance and learning activities: Attendance at all class sessions is expected. Students are expected to notify the instructor of any absences with as much advance notice as possible. -
Resources
Prescribed resources: Books
- Levine, Stephan and Szabat (2014). Statistics for Managers using Microsoft Excel. seventh, Essex Pearson 751
iLearn@Bond & Email: iLearn@Bond is the online learning environment at Bond University and is used to provide access to subject materials, lecture recordings and detailed subject information regarding the subject curriculum, assessment and timing. Both iLearn and the Student Email facility are used to provide important subject notifications. Additionally, official correspondence from the University will be forwarded to students’ Bond email account and must be monitored by the student. To access these services, log on to the Student Portal from the Bond University website as www.bond.edu.au
Academic unit: | Bond Business School |
---|---|
Subject code: | STAT71-102 |
Subject title: | Analysis and Application |
Subject level: | Postgraduate |
Semester/Year: | September 2019 |
Credit points: | 10.000 |
Timetable: | https://bond.edu.au/timetable |
---|---|
Delivery mode: | Standard |
Workload items: |
|
Attendance and learning activities: | Attendance at all class sessions is expected. Students are expected to notify the instructor of any absences with as much advance notice as possible. |
Prescribed resources: | Books
|
---|---|
iLearn@Bond & Email: | iLearn@Bond is the online learning environment at Bond University and is used to provide access to subject materials, lecture recordings and detailed subject information regarding the subject curriculum, assessment and timing. Both iLearn and the Student Email facility are used to provide important subject notifications. Additionally, official correspondence from the University will be forwarded to students’ Bond email account and must be monitored by the student. To access these services, log on to the Student Portal from the Bond University website as www.bond.edu.au |
Enrolment requirements
Requisites: |
Nil |
---|---|
Assumed knowledge: |
Assumed knowledge is the minimum level of knowledge of a subject area that students are assumed to have acquired through previous study. It is the responsibility of students to ensure they meet the assumed knowledge expectations of the subject. Students who do not possess this prior knowledge are strongly recommended against enrolling and do so at their own risk. No concessions will be made for students’ lack of prior knowledge.
|
Restrictions: |
Nil |
Assurance of learning
Assurance of Learning means that universities take responsibility for creating, monitoring and updating curriculum, teaching and assessment so that students graduate with the knowledge, skills and attributes they need for employability and/or further study.
At Bond University, we carefully develop subject and program outcomes to ensure that student learning in each subject contributes to the whole student experience. Students are encouraged to carefully read and consider subject and program outcomes as combined elements.
Program Learning Outcomes (PLOs)
Program Learning Outcomes provide a broad and measurable set of standards that incorporate a range of knowledge and skills that will be achieved on completion of the program. If you are undertaking this subject as part of a degree program, you should refer to the relevant degree program outcomes and graduate attributes as they relate to this subject.
Subject Learning Outcomes (SLOs)
On successful completion of this subject the learner will be able to:
- Demonstrate a basic knowledge of statistical tools to support management decision making.
- Analyse information using a range of statistical techniques which includes drawing inference about the population based on a sample, correlation, regression and how to do simple forecasting.
- Demonstrate the ability to use spreadsheet tools to perform basic statistical analyses.
- Interpret and communicate the result of a statistical analysis in a professional report.
Generative Artificial Intelligence in Assessment
The University acknowledges that Generative Artificial Intelligence (Gen-AI) tools are an important facet of contemporary life. Their use in assessment is considered in line with students’ development of the skills and knowledge which demonstrate learning outcomes and underpin study and career success. Instructions on the use of Gen-AI are given for each assessment task; it is your responsibility to adhere to these instructions.
-
Assessment details
Type Task % Timing* Outcomes assessed Paper-based Examination (Limited Open)^ Comprehensive final examination 45.00% Final Examination Period 1,2 Paper-based Examination (Limited Open) Interim examination 25.00% Week 6 (Mid-Semester Examination Period) 1,2,3 Project Real data-based learning project. 15.00% Week 12 1,4 Essay Homework Assignment – short answer and analytical questions 15.00% Weekly 1,2,3 - ^ Students must pass this assessment to pass the subject
- * Assessment timing is indicative of the week that the assessment is due or begins (where conducted over multiple weeks), and is based on the standard University academic calendar
- C = Students must reach a level of competency to successfully complete this assessment.
Pass requirement
Students must earn a passing grade on the final examination to pass the subject.
-
Assessment criteria
Assessment criteria
High Distinction 85-100 Outstanding or exemplary performance in the following areas: interpretative ability; intellectual initiative in response to questions; mastery of the skills required by the subject, general levels of knowledge and analytic ability or clear thinking. Distinction 75-84 Usually awarded to students whose performance goes well beyond the minimum requirements set for tasks required in assessment, and who perform well in most of the above areas. Credit 65-74 Usually awarded to students whose performance is considered to go beyond the minimum requirements for work set for assessment. Assessable work is typically characterised by a strong performance in some of the capacities listed above. Pass 50-64 Usually awarded to students whose performance meets the requirements set for work provided for assessment. Fail 0-49 Usually awarded to students whose performance is not considered to meet the minimum requirements set for particular tasks. The fail grade may be a result of insufficient preparation, of inattention to assignment guidelines or lack of academic ability. A frequent cause of failure is lack of attention to subject or assignment guidelines. Quality assurance
For the purposes of quality assurance, Bond University conducts an evaluation process to measure and document student assessment as evidence of the extent to which program and subject learning outcomes are achieved. Some examples of student work will be retained for potential research and quality auditing purposes only. Any student work used will be treated confidentially and no student grades will be affected.
Type | Task | % | Timing* | Outcomes assessed |
---|---|---|---|---|
Paper-based Examination (Limited Open)^ | Comprehensive final examination | 45.00% | Final Examination Period | 1,2 |
Paper-based Examination (Limited Open) | Interim examination | 25.00% | Week 6 (Mid-Semester Examination Period) | 1,2,3 |
Project | Real data-based learning project. | 15.00% | Week 12 | 1,4 |
Essay | Homework Assignment – short answer and analytical questions | 15.00% | Weekly | 1,2,3 |
- ^ Students must pass this assessment to pass the subject
- * Assessment timing is indicative of the week that the assessment is due or begins (where conducted over multiple weeks), and is based on the standard University academic calendar
- C = Students must reach a level of competency to successfully complete this assessment.
Pass requirement
Students must earn a passing grade on the final examination to pass the subject.
Assessment criteria
High Distinction | 85-100 | Outstanding or exemplary performance in the following areas: interpretative ability; intellectual initiative in response to questions; mastery of the skills required by the subject, general levels of knowledge and analytic ability or clear thinking. |
---|---|---|
Distinction | 75-84 | Usually awarded to students whose performance goes well beyond the minimum requirements set for tasks required in assessment, and who perform well in most of the above areas. |
Credit | 65-74 | Usually awarded to students whose performance is considered to go beyond the minimum requirements for work set for assessment. Assessable work is typically characterised by a strong performance in some of the capacities listed above. |
Pass | 50-64 | Usually awarded to students whose performance meets the requirements set for work provided for assessment. |
Fail | 0-49 | Usually awarded to students whose performance is not considered to meet the minimum requirements set for particular tasks. The fail grade may be a result of insufficient preparation, of inattention to assignment guidelines or lack of academic ability. A frequent cause of failure is lack of attention to subject or assignment guidelines. |
Quality assurance
For the purposes of quality assurance, Bond University conducts an evaluation process to measure and document student assessment as evidence of the extent to which program and subject learning outcomes are achieved. Some examples of student work will be retained for potential research and quality auditing purposes only. Any student work used will be treated confidentially and no student grades will be affected.
Study Information
Submission procedures
Students must check the iLearn@Bond subject site for detailed assessment information and submission procedures.
Policy on late submission and extensions
A late penalty will be applied to all overdue assessment tasks unless an extension is granted by the subject coordinator. The standard penalty will be 10% of marks awarded to that assessment per day late with no assessment to be accepted seven days after the due date. Where a student is granted an extension, the penalty of 10% per day late starts from the new due date.
Academic Integrity
University’s Academic Integrity Policy defines plagiarism as the act of misrepresenting as one’s own original work: another’s ideas, interpretations, words, or creative works; and/or one’s own previous ideas, interpretations, words, or creative work without acknowledging that it was used previously (i.e., self-plagiarism). The University considers the act of plagiarising to be a breach of the Student Conduct Code and, therefore, subject to the Discipline Regulations which provide for a range of penalties including the reduction of marks or grades, fines and suspension from the University.
Bond University utilises Originality Reporting software to inform academic integrity.Feedback on assessment
Feedback on assessment will be provided to students within two weeks of the assessment submission due date, as per the Assessment Policy.
Accessibility and Inclusion Support
If you have a disability, illness, injury or health condition that impacts your capacity to complete studies, exams or assessment tasks, it is important you let us know your special requirements, early in the semester. Students will need to make an application for support and submit it with recent, comprehensive documentation at an appointment with a Disability Officer. Students with a disability are encouraged to contact the Disability Office at the earliest possible time, to meet staff and learn about the services available to meet your specific needs. Please note that late notification or failure to disclose your disability can be to your disadvantage as the University cannot guarantee support under such circumstances.
Additional subject information
As part of the requirements for Business School quality accreditation, the Bond Business School employs an evaluation process to measure and document student assessment as evidence of the extent to which program and subject learning outcomes are achieved. Some examples of student work will be retained for potential research and quality auditing purposes only. Any student work used will be treated confidentially and no student grades will be affected.
Subject curriculum
-
Displaying and Summarising Data
Basic Statistics. An introduction to basic statistical concepts and definitions. A variety of graphs are also discussed including pie charts, bar charts, boxplots, histograms, line charts and scatter plots. Basic numerical descriptive statistics are introduced including measures of central location, variability, shape, relative standing and linear association.
-
Discrete Probability Distributions
Introduces the concept of probability and basic probability rules. Examines mean and variance of discrete probability distribution as well as binomial distribution.
-
Continuous Probability Distribution
A review of the normal distribution and its applications.
-
Inferential Statistics
The concepts of point versus intervals estimates are considered. Confidence intervals for both the mean and proportion are explained followed by an overview of hypothesis testing.
-
Correlation and Regression Analysis
The relationship between variables is introduced through correlation analysis and extended to regression analysis.
-
Regression Application
The applications of simple linear regression analysis are introduced.
-
Time Series Forecasting
Regression Analysis is extended to time series data and applied to forecasting situations.
-
Multiple Regression Application
The simple linear regression is extended to a multivariate context.
-
Statistical Quality Control
Statistical quality control techniques and their applications are introduced.